15,815 research outputs found

    Chemical studies of the passivation of GaAs surface recombination using sulfides and thiols

    Get PDF
    Steady-state photoluminescence, time-resolved photoluminescence, and x-ray photoelectron spectroscopy have been used to study the electrical and chemical properties of GaAs surfaces exposed to inorganic and organic sulfur donors. Despite a wide variation in S2–(aq) concentration, variation of the pH of aqueous HS–solutions had a small effect on the steady-state n-type GaAs photoluminescence intensity, with surfaces exposed to pH=8, 0.1-M HS–(aq) solutions displaying comparable luminescence intensity relative to those treated with pH=14, 1.0-M Na2S·9H2O(aq). Organic thiols (R-SH, where R=–CH2CH2SH or –C6H4Cl) dissolved in nonaqueous solvents were found to effect increases in steady-state luminescence yields and in time-resolved luminescence decay lifetimes of (100)-oriented GaAs. X-ray photoelectron spectroscopy showed that exposure of GaAs surfaces to these organic systems yielded thiols bound to the GaAs surface, but such exposure did not remove excess elemental As and did not form a detectable As2S3 overlayer on the GaAs. These results imply that complete removal of As0 or formation of monolayers of As2S3 is not necessary to effect a reduction in the recombination rate at etched GaAs surfaces. Other compounds that do not contain sulfur but that are strong Lewis bases, such as methoxide ion, also improved the GaAs steady-state photoluminescence intensity. These results demonstrate that a general class of electron-donating reagents can be used to reduce nonradiative recombination at GaAs surfaces, and also imply that prior models focusing on the formation of monolayer coverages of As2S3 and Ga2S3 are not adequate to describe the passivating behavior of this class of reagents. The time-resolved, high level injection experiments clearly demonstrate that a shift in the equilibrium surface Fermi-level energy is not sufficient to explain the luminescence intensity changes, and confirm that HS– and thiol-based reagents induce substantial reductions in the surface recombination velocity through a change in the GaAs surface state recombination rate

    Weak-Field Thermal Hall Conductivity in the Mixed State of d-Wave Superconductors

    Full text link
    Thermal transport in the mixed state of a d-wave superconductor is considered within the weak-field regime. We express the thermal conductivity, κxx\kappa_{xx}, and the thermal Hall conductivity, κxy\kappa_{xy}, in terms of the cross section for quasiparticle scattering from a single vortex. Solving for the cross section (neglecting the Berry phase contribution and the anisotropy of the gap nodes), we obtain κxx(H,T)\kappa_{xx}(H,T) and κxy(H,T)\kappa_{xy}(H,T) in surprisingly good agreement with the qualitative features of the experimental results for YBa2_{2}Cu3_{3}O6.99_{6.99}. In particular, we show that the simple, yet previously unexpected, weak-field behavior, κxy(H,T)TH\kappa_{xy}(H,T) \sim T\sqrt{H}, is that of thermally-excited nodal quasiparticles, scattering primarily from impurities, with a small skew component provided by vortex scattering.Comment: 5 pages, 2 figures; final version as published in Phys Rev Let

    A Scattered Light Echo around SN 1993J in M81

    Full text link
    A light echo around SN 1993J was observed 8.2 years after explosion by a HST WFPC2 observation, adding to the small family of supernovae with light echoes. The light echo was formed by supernova light scattered from a dust sheet, which lies 220 parsecs away from the supernova, 50 parsecs thick along the line of sight, as inferred from radius and width of the light echo. The dust inferred from the light echo surface brightness is 1000 times denser than the intercloud dust. The graphite to silicate fraction can not be determined by our BVI photometric measurements, however, a pure graphite model can be excluded based on comparison with the data. With future observations, it will be possible to measure the expansion rate of the light echo, from which an independent distance to M81 can be obtained.Comment: 10 pages, 6 figures, in AASTeX format, submitted to ApJ Part

    The influence of magnetic order on the magnetoresistance anisotropy of Fe1+δx_{1+\delta-x}Cux_{x}Te

    Full text link
    We performed resistance measurements on Fe1+δx_{1+\delta-x}Cux_{x}Te with xEDX0.06x_{EDX}\leq 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For xEDX=0.06x_{EDX} = 0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.Comment: 11 pages, 9 figure

    Constraining the Atmospheric Composition of the Day-Night Terminators of HD 189733b : Atmospheric Retrieval with Aerosols

    Get PDF
    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μ\mum. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μ\mum that were recently re-analyzed by Pont et al. (2013). To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO3_3, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μ\mum and an optical depth in the range 0.002-0.02 at 1 μ\mum provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μ\mum, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μ\mum as well as longward of 8 μ\mum, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.Comment: Transferred to ApJ and accepted. 11 pages, 10 figures, 1 tabl

    Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H2_2 from Cassini Far-IR Spectroscopy

    Full text link
    Far-IR 16-1000 μ\mum spectra of Saturn's hydrogen-helium continuum measured by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a near-continuous record of upper tropospheric (70-700 mbar) temperatures and para-H2_2 fraction as a function of latitude, pressure and time for a third of a Saturnian year (2004-2014, from northern winter to northern spring). The thermal field reveals evidence of reversing summertime asymmetries superimposed onto the belt/zone structure. The temperature structure that is almost symmetric about the equator by 2014, with seasonal lag times that increase with depth and are qualitatively consistent with radiative climate models. Localised heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation to the temperature profile that shifts in magnitude and location, declining in the autumn hemisphere and growing in the spring. Changes in the para-H2_2 (fpf_p) distribution are subtle, with a 0.02-0.03 rise over the spring hemisphere (200-500 mbar) perturbed by (i) low-fpf_p air advected by both the springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of high-fpf_p air at northern high latitudes, responsible for a developing north-south asymmetry in fpf_p. Conversely, the shifting asymmetry in the para-H2_2 disequilibrium primarily reflects the changing temperature structure (and the equilibrium distribution of fpf_p), rather than actual changes in fpf_p induced by chemical conversion or transport. CIRS results interpolated to the same point in the seasonal cycle as re-analysed Voyager-1 observations show qualitative consistency, with the exception of the tropical tropopause near the equatorial zones and belts, where downward propagation of a cool temperature anomaly associated with Saturn's stratospheric oscillation could potentially perturb tropopause temperatures, para-H2_2 and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure

    Private property vehicles: the valuation of interests in limited partnerships

    Get PDF
    This paper examines the extent to which the valuation of partial interests in private property vehicles should be closely aligned to the valuation of the underlying assets. A sample of vehicle managers and investors replied to a questionnaire on the qualities of private property vehicles relative to direct property investment. Applying the Analytic Hierarchy Process (AHP) technique the relative importance of the various advantages and disadvantages of investment in private property vehicles relative to acquisition of the underlying assets are assessed. The results suggest that the main drivers of the growth of the this sector have been the ability for certain categories of investor to acquire interests in assets that are normally inaccessible due to the amount of specific risk. Additionally, investors have been attracted by the ability to ‘outsource’ asset management in a manner that minimises perceived agency problems. It is concluded that deviations from NAV should be expected given that investment in private property vehicles differs from investment in the underlying assets in terms of liquidity, management structures, lot size, financial structure inter alia. However, reliably appraising the pricing implications of these variations is likely to be extremely difficult due to the lack of secondary market trading and vehicle heterogeneity

    On the potential of the EChO mission to characterise gas giant atmospheres

    Full text link
    Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in each test case. We expect around 30 Jupiter-sized planets to be observable by EChO; hot Neptunes orbiting M dwarfs are rarer, but we anticipate observations of at least one similar planet.Comment: 22 pages, 30 figures, 4 tables. Accepted for publication in MNRA

    Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest

    Full text link
    We explore the requirements for a Lyman-alpha forest (LyaF) survey designed to measure the angular diameter distance and Hubble parameter at 2~<z~<4 using the standard ruler provided by baryonic acoustic oscillations (BAO). The goal would be to obtain a high enough density of sources to probe the three-dimensional density field on the scale of the BAO feature. A percent-level measurement in this redshift range can almost double the Dark Energy Task Force Figure of Merit, relative to the case with only a similar precision measurement at z~1, if the Universe is not assumed to be flat. This improvement is greater than the one obtained by doubling the size of the z~1 survey, with Planck and a weak SDSS-like z=0.3 BAO measurement assumed in each case. Galaxy BAO surveys at z~1 may be able to make an effective LyaF measurement simultaneously at minimal added cost, because the required number density of quasars is relatively small. We discuss the constraining power as a function of area, magnitude limit (density of quasars), resolution, and signal-to-noise of the spectra. For example, a survey covering 2000 sq. deg. and achieving S/N=1.8 per Ang. at g=23 (~40 quasars per sq. deg.) with an R~>250 spectrograph is sufficient to measure both the radial and transverse oscillation scales to 1.4% from the LyaF (or better, if fainter magnitudes and possibly Lyman-break galaxies can be used). At fixed integration time and in the sky-noise-dominated limit, a wider, noisier survey is generally more efficient; the only fundamental upper limit on noise being the need to identify a quasar and find a redshift. Because the LyaF is much closer to linear and generally better understood than galaxies, systematic errors are even less likely to be a problem.Comment: 18 pages including 6 figures, submitted to PR
    corecore